朗研光电

picobullet_roi2.jpg

工业级超短脉冲激光器PicoBullet是一款全新的高能量超快激光器,该激光系统由激光输出头、电源模块、水冷机组成,采用紧凑的结构设计,使其可以与其他激光加工设备高度集成。PicoBullet采用全光纤被动锁模技术,可以实现7×24小时长期稳定工作。同时也采用高功率全光纤放大技术,输出高质量光束,可完美应用于钻孔、切割及微加工等。PicoBullet可以输出10 ps脉冲宽度以及大于100 μJ的高能量脉冲,几乎可以满足任何材料加工,是一款极具性价比、稳定性的微细加工工业级超快激光器。


》》产品特性
◇ 平均功率40W@400KHz
◇ 脉冲宽度10ps
◇ 重复频率1Hz-2MHz
◇ 脉冲能量100uJ@10ps
◇ 光束质量TEM00 M2 < 1.3
◇ 工业化设计 • 可选倍频模块输出

》》应用领域
◇ 高速精密金属加工
◇ 玻璃切割、钻孔
◇ 半导体切割
◇ 金属薄膜切割
◇ 硬质材料加工(金刚石、陶瓷、蓝宝石等)
◇ 微结构加工
◇ 科学应用

》》性能参数

ROI 1030nm 皮秒激光器(高功率)Picobullet_40

高功率超快光纤激光器 YPSA朗研光电最新提供的掺镱光纤飞秒激光系统YPSA-532产品,得益于全保偏光纤锁模技术、高稳定度激光放大技术,实现了低重复频率,窄光谱宽度输出。该YPSA-S产品集成了光纤激光器、脉冲选单器、光纤/固体混合放大器,典型输出波长1064 nm或532 nm,脉冲宽度10 ps(更长脉冲宽度可定制)。优化的风冷结构及高集成度、高可靠性的的光电子设计确保了激光系统的长期稳定运转。


》》特点运用
◇ 1 μm超快激光脉冲 一 Ultrafast fiber laser @ 1064 and 532 nm
◇ 高可靠性,长寿命 一 Robust and reliable design & Long-life time
◇ 低噪声脉冲放大技术 一 Low-noise ultra fast pulse amplification
◇ 光纤固体混合结构 一 PM-fiber and solid-state hybrid configuration

》》应用场景
◇ 固体放大器种子源 一 seed for solid-state amplifier
◇ 精密加工 一 Precision machining
◇ 材料切割 一 Material cutting
◇ 生物医学 一 Biomedical

高功率超快光纤激光器 YPSA

上海朗研光电最新提供的掺镱光纤飞秒激光系统YPSA-F 系列,得益于全保偏光纤锁模技术、色散控制技术和全光纤功率放大技术,实现了高功率、高能量的超快脉冲输出。输出波长覆盖1030-1070 nm,最优脉冲宽度200 fs,到20 ps量级可定制,输出平均功率最高可达10W。优化的风冷结构及高集成度、高可靠性的的光电子设计确保了激光系统的长期稳定运转。这款产品可广泛用于激光微加工、生物医学、光学成像等领域。

XFiberElite 系列 – 测试

XFiberElite Series
Ultrafast Fiber Seed Lasers 

 

XFiberElite.png XFiberElite Series包括如下4个子系列:
X代表Yb,Er, Tm等激光激活离子:• uYbPicoElite
• uYbPicoCHIElite
• uErPicoElite
• uErFemtoElite

XFiberElite系列激光器是基于朗研光电特有的XFFC (XFiber-laser Frequency Comb) 技术平台打造、具有高兼容性、小型化的超脉冲激光光源,输出波长主要涵盖1030-1090nm和1560nm两个波段,配合外部光学倍频器可分别拓展至532nm和780nm波段;脉冲宽度覆盖50fs–80ps范围,重复频率在10-100MHz范围可定制。

XFiberElite产品标准型号指标说明

型号 中心波长* 脉冲宽度 输出功率 脉冲能量 重复频率** 页码
Elite10 1030 nm

1040 nm

1053 nm

1064 nm

or

1550 nm

1560 nm

1570 nm

8 ps 2 mW 100 pJ 20 MHz 04
Elite100 8 ps 50 mW 2.5 nJ 20 MHz 04
Elite200 8 ps 200 mW 10 nJ 20 MHz 04
CHI Elite10 10 ps 2 mW 40 pJ 50 MHz 05
CHI Elite100 10 ps 50 mW 1 nJ 50 MHz 05
CHI Elite200 10 ps 200 mW 4 nJ 50 MHz 05

*    中心波长1030–1090nm均可定制
**  重复频率10 –100MHz 均可定制

皮秒激光在精密加工领域的应用

WA_Die_Attach_Soldering3-(3)-large

玻璃、蓝宝石和陶瓷是普遍应用于微加工技术和精细加工的材料。然而,它们给传统的制造工艺带来了越来越多的挑战,这种挑战也给强大的超短脉冲激光器赢得了更多机会。 这些材料优质的属性对很多产品来说是不可或缺的:玻璃用来制作智能手机的显示屏,显示屏有着钢化的外壳 ;陶瓷坚硬,化学性质稳定,可用来制作电子零部件和电路基板,以及电气绝缘体。蓝宝石极其坚硬,耐划伤,适合用于半导体和 LED 技术。但玻璃、 陶瓷、 和蓝宝石有个共同点就是很难加工。由于它们易碎而且都是非常坚硬的材料,他们挑战着铣、 钻、 磨等传统制造工艺的极限。加工这些材料时刀具磨损快,并且需要好几个加工环节才能得到足够好的加工质量。

1、在坚硬、易碎的材料上使用激光光束

激光光束在坚硬、易碎的材料特别能展现出良好的效果。它们不会磨损且能聚焦到最小直径。扫描振镜能灵活定位光束,能几乎满足各种形状轮廓的加工需要。超短脉冲激光器特别适合加工易碎的材料。对于小于100 ps的激光脉冲,在热传导到周边的材料上之前,被加工区域的材料已经汽化了。只要激光参数精确调整到和应用相匹配,那么就不需返工。对可见光以及近红外的光谱范围内的光来说,很多像玻璃这样的宽带隙电介质是透光的。然而,高强度的皮秒脉冲能通过多光子电离产生自由电子。大量连续的电离进一步释放电荷载体,这些电荷载体能够破坏材料中的化学键,最终达到烧蚀材料的目的。

2、低热输入避免产生裂缝

当加工易碎材料时,避免产生小裂缝是经常要遇到的挑战,这些小裂缝会削弱零部件的强度。产生裂缝的一个原因是过度的热量进入了零部件。热量导致材料膨胀,加快了裂缝的生成。适当的加工策略可以防止小裂纹的形成。这其中就包括精准定义加工参数,如脉冲能量、 脉冲重叠度、 重复频率、 焦点直径和激光加工次数。最佳工作点取决于材料、 加工形状、加工时间和质量的要求,并通过应验试验加以确认。位于德国南部Ditizingen的Trumpf公司和德国西部 Aachen的Fraunhofer激光技术研究所开展联合研究,发展了优化激光加工脆性材料效果的理论基础。

3、加工强化玻璃

智能手机的兴起加大了显示屏的重要性。智能触摸显示屏(触摸屏)已经超越了手机键盘成为最主要的用户界面。典型的智能手机包括四块玻璃平板:两块在显示屏上,容纳薄膜晶体管和液晶材料;一块提供触摸功能;还有一块化学钢化玻璃盖板保护底层免于划伤,冲击损伤和脏物。由于用户想要轻便、纤薄的智能手机,更薄的玻璃面板被使用。典型的玻璃显示面板为0.3 mm厚;化学钢化玻璃盖板0.7 mm厚。这使得传统的切割工艺达到了极限。切削轮子已经不适合加工这种玻璃,因为他们都经过特殊的化学强化处理,而铣削加工则需要大量研磨和抛光上的返工工作。

红外和绿光波长的超短脉冲激光器正好可用于这种材料的加工。皮秒脉冲能减少裂缝的产生,切割质量远远超过普通的铣削加工。激光光束多次扫过被加工材料来实现切割。速度,边缘质量和边缘的角度可以由加工策略来决定。相对于其他的激光工艺,烧蚀工艺更稳妥:例如,轻微变形的玻璃并不影响加工结果。在测试中,使用绿光皮秒激光器,”Corning Eagle XG”的弯曲强度达280兆帕。使用红外皮秒激光器的测试结果表明速度增加三倍,边缘的弯曲强度略低。

更强大的皮秒激光器使我们有更大的机会来提高加工玻璃的效率。我们比较钢材和玻璃的烧蚀速度以及加工效率时这种机会尤为明显。由于等离子体屏蔽的原因,钢材的烧蚀效率在5 J/cm2的脉冲能量密度时开始降低,而玻璃允许更高的脉冲能量密度,直到加工效率达到最高。因此当加工玻璃时,更高的脉冲能量可以转化为更高的烧蚀效率。

4、适用于任何棘手情况的蓝宝石

蓝宝石是地球上仅次于钻石第二坚硬的材料,很难使用机械的方法来加工。使用激光器来切割蓝宝石是当今LED制造业的标准加工方法,蓝宝石在这里用作基板衬底。由于其抗划伤性和透光性,蓝宝石会用来生产手表和光学仪器的保护镜面。 当加工细小的轮廓时,超短脉冲激光器可以实现精准的加工。例如当切割圆形部件和钻微孔时,柔性的轮廓加工可以通过高速扫描器来实现。超短脉冲除去了加工时的热影响,从而产生极好的切割边缘质量。卓越的加工质量取决于加工方法、 除尘和工件夹具之间的适宜的配合。 例如,将脉冲能量为250 μJ的激光光束分成两个125 μJ的独立激光光束同时加工两个零部件就可以获得更高的产量。

5、陶瓷

工程陶瓷经常会用于暴露在高温或要求耐磨损的零部件上。在许多应用中,对材料的电绝缘性要求很高。例如,工程陶瓷用于汽车行业中传感器芯片的PCB材料,用于油泵的耐磨损贮存材料,或用于食品行业中喷嘴材料。最常见的工程陶瓷材料有氧化铝,氮化铝和氧化锆。 激光非常适合在薄陶瓷上钻孔,切割或者结构处理。例如,使用红外超短脉冲激光器可以以高达10 mm/s的速度切割0.3 mm厚的氧化锆板。超短脉冲可产生平滑,无裂纹的切割边缘。鉴于超短脉冲激光锐利的聚焦特性,他们非常适用于打孔:能在0.5 毫米厚的氧化铝和氮化铝陶瓷上钻出直径为60 μm的孔。打孔速度可达每秒20个孔。在划片-裂片的工艺中,激光切割到材料的三分之一厚度,然后用机械方式裂片,速度可达50 mm/s。

工业微加工:超短脉冲激光设备

2017-10-09-08-19-45-Close-Laser-Cutting

超短脉冲激光设备已经慢慢从研究实验室转移到了工业微加工。皮秒和飞秒级别的脉冲宽度使得材料能够不经过液化直接气化。通过冷消融可以实现对玻璃、金属、陶瓷和聚合物的逐层去除。钟表业正在使用这种技术进行精细雕刻,扫描振镜对复合材料的切割和钻孔不会造成任何的热影响区(HAZ),因而产生的表面和边缘质量较高。

> 超短激光脉冲消除热影响

然而,对于某些应用,使用扫描振镜冷消融的加工方式得到的精度与锥角是不够的。锥角是在切割缝的边界时产生的,部分是因为激光能量密度(每单位面积的能量)在那里比较低,部分是因为材料在那里再沉积。对于这些应用,使用固定加工头、加工气体喷嘴和高精度轴是很有优势的。然而,轴的加速度和速度与扫描振镜相比是微不足道的。因此,激光引入的热量在固定加工头的应用中会比较多。即使是局部熔化材料也不能完全排除这种现象。尽管如此,可以依旧保持工件质量。与固体激光器和CO2 激光器的“热”激光切割相比,超短脉冲确保引入的热量在时间和空间上是可控的。因此,仍然不会对工件造成热影响。用固定加工头的USP激光微切割就如同微米范围的热加工。

> 更加陡的锥角和良好的边缘质量

与扫描振镜的冷消融加工方式相比,如果能正确采用固定加工头微切割加工,则能形成更陡的锥角,同时保持良好的边缘质量。优化的喷嘴能够提供加工气体,在高压下去除材料的切缝。除了激光参数,喷嘴的几何形状和位置,以及加工气体的类型和压力同样显著影响着切割效果。另一个重要的方面就是合适的工件固定夹具的发展,同时支持可靠的固定和材料的自由切割。要将设计图导入激光系统加工时,必须考虑激光的切入以及出口的位置。当涉及高精度,工艺的开发和质量的控制时,就需要适当的测量设备,才能够可靠地测量几微米和表面粗糙度值低于一微米的公差。

> 提高零件质量的后续处理方法

各种后续的处理也许能够进一步提高工件质量。在丝电火花加工和微细铣削的情况下,可以考虑热处理以获得目标强度、硬度或退火材料。为了优化粗糙的表面,如果需要的话,可以用一些化学的机械后处理方法。激光切割工件,有时会通过电化涂层来达到理想的表面。钟表业是应用固定光学微切割或钻加工方式最重要的领域之一,如红宝石微轴承、手表手柄或其他元素。

> 为钻小孔设计的开孔加工头

在加工过程中,通常我们需要得到一个陡的90度锥角。对于小孔的钻孔,使用所谓的开孔加工头可以做到。当它涉及到更复杂的几何形状的微切割时,这种类型的方法也变得越来越有优势。从热管理的角度来看,这个加工方式与使用精确的机械轴固定加工头微切割来加工是类似的。然而,一些开发工作仍需改进现有开孔加工头,使得它们变得更人性化,适用于比较复杂的工业微切割应用。一个有趣而具有挑战性的选择是工件夹具由一个倾斜的锥角来补偿,特别是切割出整个工件。

切割蓝宝石的冷激光加工法

laserex

蓝宝石是目前应用广泛的一种材料,其同时具有耐划伤、耐冲击与柔性的各种性能。蓝宝石长期以来用于制作手表保护玻璃或相机镜头的防护玻璃罩和滤光玻璃,现在其也越来越多地应用于制作手机屏幕。蓝宝石玻璃由无色的合成刚玉板(即采用熔融氧化铝生产的多种矿物质)构成。事实上,严格说来蓝宝石并不是一种玻璃,因其并不具备玻璃质的无定形结构,而是一种晶体结构。由于其莫氏硬度为9,蓝宝石在所有透明材料中硬度排名第二,仅次于钻石。

由于蓝宝石独有的特性,与通常用于显示器行业的化学强化玻璃相比,更具优势。蓝宝石材料硬度高但易碎,因此只有借助先进的激光加工技术,才可有效地应用于批量生产。采用微秒级短脉冲激光器的”热”激光束切割;采用超短脉冲”冷”激光加工法(所谓超短脉冲激光器的脉冲持续时间只有几个皮秒)。”冷”激光加工能够提供更好的断面质量,但是它们通常比用于热激光切割蓝宝石、能够产生高达300 W的平均输出功率的光纤激光器更昂贵。

> 无微裂纹,无崩边

“热”激光切割适用于切割盖板玻璃的外轮廓和内轮廓,比如用于安装相机、LED或扬声器的孔。通常情况下,玻璃基底厚度不超过1毫米,切割后经过抛光减薄,最终厚度在600-800 μm之间。在这种情况下,切割就是一种熔化的过程:通过将能量传递到接触面的方式来熔化加工材料,在相对高压气体的作用下,熔体从相互作用区吹出来。如此一来,在切边上不会有熔体残留,再次冷却固化而损害切边质量。使用”热”激光工艺加工蓝宝石时,蓝宝石不会产生微裂纹或崩边。该法提高了蓝宝石切割的强度和耐弯性。

使用”热”切割工艺时,可以使用多种惰性气体:这样,就可以隔绝氧气,从而对边缘性质产生积极的影响。根据客户需求,可以灵活配置脉冲宽度、气体、压力、速度以及工艺重复(即”加工”的次数)等参数。虽然切割的结果会有所不同,但切边有一个共同点:它们都呈90度直角。

> 可获得白色断面的超短脉激光

使用皮秒级激光对蓝宝石玻璃进行”冷”加工时,所切割的材料不是被熔化而是被气化了。由于脉冲持续时间非常短,产生的脉冲峰值能量非常高,才使得气化得以实现。激光切割头采用永久式安装,不再沿线性轴移动。激光束通过高速振镜转移。除此之外,皮秒级激光不再以光纤传输,而是利用反射镜片进行自由光路传输。

与采用热激光光束相比,采用皮秒级激光的”冷”加工方法,可获得更高的切边质量,同时边缘的粗糙度更低。尽管热切割的产量可能更高,但为了满足质量要求,必要时仍需对其产生的黑色断面进行费力的打磨。这正是皮秒级激光器的主要优势所在:尽管其加工速度在一定程度上低于”热”激光束切割的速度,但能直接提高白色切边的质量,并降低其粗糙度。由此,之后的打磨将变得为轻松了(如果有必要打磨的话)。虽然皮秒级激光器的购置成本比光纤激光器更高,但是除了能够得到更好的边缘质量,这种超短脉冲激光器还具有更多其他优势,这些优势更证明了它的物超所值:微秒级激光器加工的切割面有一个倾斜面或”锥度”,一般不超过10度。这提高了显示屏幕的强度。利用高斯强度分布,可轻松从边缘上移除的强度不同的材料。

客户所期望的、能够提高显示屏强度的另一种技术要求是对接触面进行的倒角处理–对断面进行的局部倒角处理,如以45度角削掉30-50 mm(深度)的材料。同样,只有皮秒级激光器才能实现这种倒角处理–由工艺参数设置而定。即便有镀膜的蓝宝石基底,皮秒级激光器仍能对其进行切割,因为这皮秒级激光器只会对表面造成极小的损伤。采用”热”切割工艺对带有镀膜的材料进行干净利落的切割是不可行的,因为表面会被熔化,膜层也会因此受损。

光纤激光器在切割领域中的优势

Laser1

光纤激光器是国际上新发展的一种新型光纤激光器输出高能量密度的激光束,并聚集在工件表面上,使工件上被超细焦点光斑照射的区域瞬间熔化和气化,通过数控机械系统移动光斑照射位置而实现自动切割,速度快,精度高。

1. 原理:

光纤通常是以SiO2为基质材料拉成的玻璃实体纤维,主要广泛应用于光纤通讯,其导光原理就是光的全内反射机理。普通裸光纤一般由中心高折射率玻璃芯(芯径一般为9 – 62.5 μm)、中间为低折射率硅玻璃包层(芯径一般为125 μm)和最外部的加强树脂涂层组成。光纤可分为单模光纤和多模光纤。单模光纤:中心玻璃芯较细(直径9 μm + 0.5 μm),只能传一种模式的光,其模间色散很小,具有自选模和限模的功能。多模光纤:中心玻璃芯较粗(50 μm +1 μm),可传多种模式的光,但其模间色散较大,传输的光不纯。

2. 优点:

光纤激光器具有体积小、能耗低、寿命长、稳定性高、免维护、多波段、绿色环保等特征,它以优越的光束质量、稳定的性能、超高的光电转换效率,赢得了众多激光业内人士的肯定。光纤激光器以其超高的可靠性,卓越的光束质量,低廉的运行成本,为激光加工行业建立了新的标准。它增益介质长、耦合效率高、散热好、结构简单紧凑、使用灵活方便、输出激光光束质量好且输出波长范围宽(400~3400 nm)。

3. 应用:

光纤激光器只消耗相当于1%的灯泵激光器所需电能,同时其效率是半导体泵固体激光器(Nd 激光系统)的两倍以上。更高的效率、更长的使用寿命、更少的维护结合起来使得光纤激光器的拥有者的成本富有极强的吸引力。光纤激光器在那些要求近红外高光束质量的激光器应用中大有用武之地。他们会对小的聚焦光斑、高的功率密度有特殊的兴趣,如桌面式的生产。一束100 W的激光输出光斑可以被聚焦到5 μm那么小,这相当于亮度是109W/cm2。纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔、切割、焊接、光纤激光器可作为军用激光信标光源;在海军装备中,光纤激光器可用作对潜通讯、探测鱼雷、测量海深、水下传感及海基光控武器。军事国防安全、医疗器械仪器设备、大型基础建设等等。

飞秒激光的超精细冷加工特点

超精细冷加工

飞秒激光的加工机理与普通的长脉冲激光(CO2激光、Nd:YAG激光)加工不同,它能以极快的速度将其全部能量(最大峰值功率可达1012W甚至1015W量级)注入到很小的作用区域,瞬间内产生的高能量密度(其峰值功率密度达到1022W/cm2以上)的沉积将使电子的吸收和运动方式发生变化,可以避免线性吸收、能量转移及扩散过程等的影响,从根本上改变了激光与物质相互作用的机制,使其在处于当今技术前沿的超快激光精细冷加工方面拥有独特的优势及广泛的应用前景。这种具有高精度、超高空间分辨率及超高广泛性的冷加工过程,使飞秒激光在微电子、光子学和MOEMS(激光机电系统)等高新技术领域中应用前景巨大。

准分子激光虽然与飞秒激光一样均可以进行表面微加工,但准分子激光加工有其固有的缺陷,对加工对象依据波长对材料有选择性,加工处理的材料与范围受限制(这是由于其加工过程基于材料对光子的共振吸收造成的)。另外,准分子激光由于激光辐射可被透明材料表面吸收,故只能进行表面微细加工。而飞秒激光不仅能进行表面微细加工,而且可在透明材料内部进行加工。且飞秒激光加工尺寸更小,加工精度更高。

与常规激光相比飞秒激光的超精细冷加工具有以下几个特点:

(1)加工尺寸小,可实现超微细(亚微米至纳米量级)加工。

一般激光加工区域的横向尺寸要大于激光波长尺寸,这是由于受到衍射极限的限制造成的。尽管飞秒激光的聚焦光斑尺寸也不可能小于半个波长,但飞秒激光由于峰值功率极高,与物质相互作用不是单光子过程,而主要是多光子过程。如果通过调节激光入射能量,则能使加工过程的能量吸收及作用范围被局限于焦点中心位置的很小一部分体积内,而不是整个聚焦光斑辐照的区域,这时加工尺寸可远远小于聚焦光斑尺寸,突破了光束衍射极限,达到亚微米甚至纳米级。

(2)加工热影响区小,可实现高精度的非热熔性加工。

由于飞秒激光可以在极短的时间和极小空间范围内以极高的激光功率密度作用于材料,在没有热扩散的极短时间内使电子温度达到极高,使物质从固态瞬间变为高温、高压的等离子体态,迅速的喷射形式脱离加工基体,其周围物质仍处于“冷状态”,因此与长脉冲激光加工相比,飞秒激光没有热扩散,加工边缘整齐及加工精度高,实现了所谓的“非热熔性”加工。

(3)能克服等离子体屏蔽,具有稳定的加工阈值,加工效率高。

在长脉冲激光加工中,由于入射激光会被等离子体吸收与散射,造成激光与材料耦合效率的减弱,等离子体屏蔽是一个重要问题。而当采用100fs超短脉冲激光加工时,在等离子体临界密度达到之前,脉冲能量已经结束沉积,即在等离子体向外膨胀之前,飞秒激光的辐射已经结束,这样就避免了等离子体屏蔽的出现,有利于提高飞秒激光的能量耦合效率,从而也提高了飞秒激光的加工效率。此外,在长脉冲激光加工中,激光加工的稳定性常常受到材料掺杂及缺陷的影响。而飞秒激光加工材料时,由于多光子电离作用,材料的掺杂和缺陷对激光烧熔阈值影响很小,所以能使加工阈值更趋稳定。

(4)可实现精密的三维加工。

聚焦强度位于烧熔值附近的飞秒激光束可以毫无衰减地到达透明材料内的聚焦点,并在聚焦点可以获得极高的激光功率密度,产生多光子吸收及电离,使飞秒激光加工过程具有严格的空间定位能力,实现透明材料内部任意位置的三维超精细加工。

(5)加工材料范围广。

由于多光子吸收(非共振吸收)及电离阈值仅与材料中的原子特征有关,而与其中的自由电子浓度无关,因此飞秒激光可对任何材料实现精细加工,而与材料的种类及特性无关。飞秒激光可以精细加工光学玻璃、陶瓷、各类电介质材料、各种半导体、聚合物以及各种生物材料乃至生物组织,特别是对熔点相对较低,且易产生热扩散的金属材料进行精细加工,飞秒激光以其“非热熔性”的“冷”加工,展示出它的极大优势和广阔的应用前景。