朗研光电

皮秒光纤激光器

皮秒加工

皮秒激光脉冲较短的持续时间是冷加工的一个必要条件,但是光有足够短的脉冲还远远不够。如果热电子因为过高的激光能量密度而被“过度加热”,那么热扩散效应将较为明显,整个加工过程则会转变为热过程。一般来讲,大约1 J/cm2的能量密度,是用皮秒光纤激光器进行消融加工、而不会产生能够测量得到的热效应的最佳能量临界点,即此时具有最佳的低热穿透深度。皮秒脉冲(皮秒光纤激光器)的线性吸收所产生的影响往往被忽视,因为脉冲的峰值功率非常高,以至于贯穿多光子过程的非线性吸收相对于线性吸收来讲占据了主导地位。如果上述情况的脉冲持续时间和能量密度的边界条件都得以满足,那么这种说法往往会产生误导。

具有适当能量密度与波长的皮秒脉冲(皮秒光纤激光器),适合用于那些要求热影响非常小的材料加工应用。此外,对于皮秒脉冲的持续时间而言,产生这些脉冲的技术方法可以大大简化。无需啁啾脉冲放大(CPA)的直接二极管泵浦和放大(功率调整),对于超短脉冲技术在工业市场的成功,是非常必需的。事实上,对于工业微加工领域一种具有成本效益的应用而言,必须将平均输出功率增加到50 W甚至更高。

然而,当放大皮秒脉冲(皮秒光纤激光器)和飞秒脉冲时,高光强会导致非线性效应,如自相位调制或拉曼散射,这需要在超快光纤放大器中增加复杂的啁啾脉冲放大,或将可获得的最大脉冲能量限制在6μJ甚至更低。用碟片激光器技术作为皮秒脉冲的放大器,能够实现高峰值功率(高达100 MW)和低光强,并且不会产生非线性效应。为了实现具有高脉冲能量(高达250 μJ)和高平均功率(高达100 W)的皮秒光纤激光器,需要使用具有以下独特配置的主振功率放大器:一个基于电信组件的被动锁模光纤激光器,作为一个单片集成的、具有成本效益的、可靠的光源,用于低功率和低脉冲能量皮秒脉冲的产生。

飞秒激光微加工技术在光通信及医学领域的应用

飞秒加工.png

随着技术的不断的发展,飞秒激光微加工技术已经深入到光通信及医学各个领域。

  1. 飞秒激光加工微结构

    基于能量高度集中、热影响区小、无飞溅无熔渣、不需特殊的气体环境、无后续工艺、双光子聚合加工精度可达0.7 μm等优势,飞秒激光在诱导金属微结构加工应用方面和精细加工方面都取得了很大的进展。

  2. 光通信领域

    光通信的高速率、大容量和宽带宽的发展方向,要求光电器件的高度集成化。而集成化的前提是光电器件的微型化。因此,光电器件的微型化是当前光通信领域研究的前沿和热点。近年来,相比传统的光电技术,飞秒激光微加工技术将成为新一代光电器件的制造技术。国内外学者在光波导的制备技术等诸多方面进行了有益的探索,取得了很大的进展。

  3. 生物医疗领域

    飞秒激光具有”冷”加工、能量消耗低、损伤小、准确度高、三维空间上严格定位的优点,最大限度地满足了生物医疗的特殊要求:手术风险低,可对同一患处进行多次手术,治疗愈合周期短;相比传统手术刀,医源性感染少;”全激光”手术,无刀胜有刀,精确度高;无痛,无并发症。

此外,还在一些特殊领域具有广阔的应用前景:

  • 钻孔、切割高热导性、高熔点金属(如铼、钛等)和高硬度金刚石。
  • 安全切割一些高爆危险物品如:LX-16、TNT、PETN、PBx等,避免了长脉冲激光线性吸收、能量转移和扩散等的影响,断面处没有炸药熔化和反应的痕迹。
  • 利用飞秒激光观测分析物理化学反应本质,有望控制核聚变,以获得可控的无污染核聚变能源。
  • 将光频与波频联系起来的飞秒光梳技术,为更精确的频率机构一光钟的诞生铺平了道路。